6.2 文件的缓存位置

1. 文件的缓冲

1.1 缓冲说明
将文件内容写入到硬件设备时, 则需要进行系统调用, 
这类I/O操作的耗时很长, 为了减少I/O操作的次数, 文件通常使用缓冲区.
当需要写入的字节数不足一个块时, 将数据放入缓冲区, 当数据凑够一个块的大小后才进行系统调用(即I/O操作).
系统调用: 向操作系统申请一个服务, 操作系统响应后, 帮助调用硬件的驱动程序, 这种操作称为I/O操作.
1.2 文件的缓冲行为:
全缓冲: 只有当数据凑够一个块时, 才进行系统调用(即I/O操作).

行缓冲: 碰到一个'换行符', 就进行一次系统调(多用于tty设备, 也就是终端设备, 如shell).

无缓冲: 不进行缓冲, 需要及时的将数据发送到接口(比如串口设备).
1.3 补充知识
机械硬盘的盘面可以分为很多磁道, 可以将磁道划分为个扇区.

扇区: 是磁盘的最小组成单元, 是磁盘的读写基本单位, 传统一个扇区为512字节.
硬盘公司大概在2010年左右, 开始从传统的512字节扇区大小磁盘迁移到更高效的4096字节(目前还是很少).

由于扇区的数量比较小且数目众多, 在寻址时比较困难, 
所以操作系统就将相邻的扇区组合在一起, 形成一个块, 再对块进行整体的操作.

: 是操作系统与磁盘之间交流的最小单位, 它是一个虚拟的概念. 
操作系统忽略对底层物理存储结构的设计, 虚拟出来磁盘块的概念, 在系统中认为块是最小的单位.
它的所以大小可以通过操作系统设置, 一个块通常是4K(4096字节).
对应扇区为512字节的硬盘来说, 1个块是由连续的8个扇区组成.
对应扇区为4096字节的硬盘来说, 1个块是由1个扇区组成.

固态硬盘与内存使用是闪存芯片, 没有扇区一说而是称为页, 
固态硬盘一个页是8KB甚至16KB的, 内存一个页是64k.

2. buffering 参数

Python的文件对象的默认的缓冲行为全缓冲, 当凑够一个块的数据才进行系统调用.
缓冲区的大小是根据平台和块设备自身的属性相关, 可以通过open函数buffering参数设置缓冲大小.
buffering参数设置缓冲模式以及缓冲区大小.
buffering = n, n > 1, 设定缓冲模式为全缓冲, 缓冲区大小为n个字节.
buffering = 1, 设定缓冲模式为行缓冲, 遇到换行符'\n'时进行系统调用, 不支持二进制格式.
buffering = 0, 此为无缓冲你模式, 只要有数据, 就直接进行系统调用.

3. 交互模式演示

* 以脚本方式运行, 在文件句柄关闭时会将缓存区的数据刷入硬盘中, 不好看测试效果.
import io

# 查看默认缓冲区大小
print(io.DEFAULT_BUFFER_SIZE)  # 8192
# 创建文件对象, b模式方便计算写入的字节.
f = open('a.txt', 'wb')

# 写入1000个字节的数据.
f.write(b'1' * 1000)  # 这个时候在打开a.txt文件, 是空白的.
input('回车继续写!')

# 在写入7190个字节的数据, 现在共有8190个字节.
f.write(b'1' * 7190)  # 这个时候在打开a.txt文件, 是空白的.
input('回车继续写!')

# 在写入2个字节的数据, 现在共有8192个字节, 这个时候缓存区满了可它没有立刻写进去...
f.write(b'1' * 2)
input('回车继续写!')

# 在写一个字节, 缓存的数据写入到硬盘中. 查看文件字符个数为8192个字节.
f.write(b'1' * 1)
input('回车结束程序!')  # 这个时候文件字符个数为8193个字节.

# 设置全缓冲区的大小为2048.
f2 = open('b.txt', 'wb', buffering=2048)
f2.write(b'+' * 1024)
input('回车继续写!')
f2.write(b'+' * 1024)
input('回车继续写!')
# 在写一个字符, 缓存的数据写入到硬盘中.
f2.write(b'-' * 1)
input('结束程序!')

# 设置行缓冲, buffering为1.
f3 = open('c.txt', 'w', encoding='utf8', buffering=1)
input('回车继续写!')
f3.write('abc')
input('回车继续写!')
f3.write('123')
input('回车继续写!')
# 这个时候, 缓存的数据写入到硬盘中.
f3.write('\n')
input('结束程序!')

# 无缓冲, buffering为0.
f4 = open('d.txt', 'wb', buffering=0)
f4.write(b'a')
input('回车继续写!')
f4.write(b'b')
input('结束成功!')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/713906.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SolarLab - hackthebox

简介 靶机名称:SolarLab 难度:中等 靶场地址:https://app.hackthebox.com/machines/SolarLab 本地环境 靶机IP :10.10.11.16 ubuntu渗透机IP(ubuntu 22.04):10.10.16.17 windows渗透机IP(windows11&…

RawChat:优化AI对话体验,全面兼容GPT功能平台

文章目录 一、Rawchat简介1.1 RawChat的主要特性1.2 RawChat的技术原理简述 二、使用教程三、案例应用3.1 图片内容分析3.2 生图演示3.3 文档解析3.4 探索更多 四、小结 一、Rawchat简介 RawChat平台的诞生,其核心理念是降低用户访问类似ChatGPT这类先进AI服务的门…

FPGA - 数 - 加减乘除

一,数的表示 首先,将二进制做如下解释: 2的0次方1 2的1次方2 2的2次方4 2的3次方8 ..... 以此类推,那么任何整数,或者说任意一个自然数均可以采用这种方式来表示。 例如,序列10101001,根据上述…

ThinkPHP邮件发送配置教程?怎么配置群发?

ThinkPHP邮件发送安全性如何保障?ThinkPHP如何实现? 无论是用户注册后的验证邮件,还是订单处理的通知邮件,都需要一个可靠的邮件发送机制。AokSend将详细介绍如何在ThinkPHP框架中配置邮件发送功能,并带您逐步了解其中…

JavaScript常见面试题(一)

文章目录 1. JavaScript有哪些数据类型,它们的区别?2.数据类型检测的方式有哪些3. 判断数组的方式有哪些4.null和undefined区别5.typeof null 的结果是什么,为什么?6.intanceof 操作符的实现原理及实现7.为什么0.10.2 ! 0.3&…

【Go语言】Gin 框架教程

Gin 框架教程 1.第一个 Gin 程序 1.1 Gin 安装 # 执行执行如下操作即可,安装Gin前需要安装Go环境 go get -u -v github.com/gin-gonic/gin # -v:打印出被构建的代码包的名字 # -u:已存在相关的代码包,强行更新代码包及其依赖包…

转让中字头控股集团公司步骤和条件

随着中国经济的不断发展,越来越多的企业开始积极寻求并购和收购机会。其中,国家总局中字头控股集团公司也是一个备受关注的对象。本篇文章将为您详细介绍国家总局中字头控股集团公司的收购流程及要求。详情致电咨询我或者来公司面谈。 中字头公司转让需满…

[DDR4] DDR4 相对 DDR3差异与优势

依公知及经验整理,原创保护,禁止转载。 传送门: 总目录 1 差异总览 出处: https://www.kingston.com.cn/en/memory/ddr4-overview Description 描述DDR3DDR4Advantage 优势电压1.5V1.2V降低内存功耗需求容量512Mb-8Gb4Gb-16Gb更大的 DIMM 容…

AI 定位!GeoSpyAI上传一张图片分析具体位置 不可思议! ! !

🏡作者主页:点击! 🤖常见AI大模型部署:点击! 🤖Ollama部署LLM专栏:点击! ⏰️创作时间:2024年6月16日12点23分 🀄️文章质量:94分…

快速UDP网络连接之QUIC协议介绍

文章目录 一、QUIC协议历史1.1 问题:QUIC为什么在应用层实现1.2 QUIC协议相关术语1.3 QUIC和TCP对比1.4 QUIC报文格式1.4.1 QUIC报文格式-Stream帧11.4.2 QUIC报文格式-Stream帧2 二、QUIC的特点2.1 连接建立低时延,2.2 多路复用流复用-HTTP1.1流复用-HT…

【OS基础】符合AUTOSAR标准的RTAOS-Alarms详解

目录 前言 正文 7.报警Alarms 7.1配置Alarms 7.1.1激活一个任务 7.1.2 设置一个事件 7.1.3报警回调Alarm Callback 7.1.4 增加计数器值 7.2设置Alarms 7.2.1 绝对Alarms 7.2.2 相对Alarm 7.3自启动Alarms 7.4 删除Alarms 7.5确认何时会发生Alarm 7.6非周期Alarm…

EMQX集群搭建

1. 什么是 MQTT? MQTT(Message Queuing Telemetry Transport)是一种轻量级、基于发布-订阅模式的消息传输协议,适用于资源受限的设备和低带宽、高延迟或不稳定的网络环境。它在物联网应用中广受欢迎,能够实现传感器、…

DETR实现目标检测(一)-训练自己的数据集

1、DETR架构 DETR(Detection Transformer)是一种新型的目标检测模型,由Facebook AI Research (FAIR) 在2020年提出。DETR的核心思想是将目标检测任务视为一个直接的集合预测问题,而不是传统的两步或多步预测问题。这种方法的创新…

FPGA IO_BANK、IO_STANDARD

描述 Xilinx 7系列FPGA和UltraScale体系结构提供了高性能(HP)和 高范围(HR)I/O组。I/O库是I/O块(IOB)的集合,具有可配置的 SelectIO驱动程序和接收器,支持多种标准接口 单端和差分。…

vxe-table表格新增节点

做前端的朋友可以参考下&#xff1a;也可结合实际需求查看相应的官方文档 效果图 附上完整代码 <template><div><vxe-toolbar ref"toolbarRef" :refresh"{queryMethod: searchMethod}" export print custom><template #buttons>&…

React写一个 Modal组件

吐槽一波 最近公司的项目终于度过了混乱的前期开发&#xff0c;现在开始有了喘息时间可以进行"规范"的处理了。 组件的处理&#xff0c;永远是前端的第一大任务&#xff0c;尤其是在我们的ui库并不怎么可靠的情况下&#xff0c;各个组件的封装都很重要&#xff0c;而…

minium小程序自动化

一、安装minium pip install minium二、新建config.json {"dev_tool_path": "D:\\Program Files (x86)\\Tencent\\微信web开发者工具\\cli.bat","project_path": "小程序项目路径" }三、编写脚本 import miniumclass FirstTest(min…

【Echarts系列】平滑折线面积图

【Echarts系列】平滑折线面积图 序示例数据格式代码 序 为了节省后续开发学习成本&#xff0c;这个系列将记录我工作所用到的一些echarts图表。 示例 平滑折线面积图如图所示&#xff1a; 数据格式 data [{name: 2020年,value: 150},{name: 2021年,value: 168},{name: 2…

设计模式-装饰器模式Decorator(结构型)

装饰器模式(Decorator) 装饰器模式是一种结构模式&#xff0c;通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能&#xff0c;是现有类的包装。 图解 角色 抽象组件&#xff1a;定义组件的抽象方法具体组件&#xff1a;实现组件的抽象方法抽象装饰器&…

git的ssh安装,windows通过rsa生成密钥认证问题解决

1 windows下载 官网下载可能出现下载太慢的情况&#xff0c;Git官网下载地址为&#xff1a;官网&#xff0c;推荐官网下载&#xff0c;如无法下载&#xff0c;可移步至CSDN&#xff0c;csdn下载地址&#xff1a;https://download.csdn.net/download/m0_46309087/12428308 2 Gi…